【全球速看料】位运算与集合
时间:2023-06-16 21:54:55来源:博客园

前言

在刷 LeetCode 的时候,我们常常碰到需要枚举同时选择几个元素,或者说枚举选择一个集合的情况,即同时选择 $\lbrace0, 1, 2\rbrace$ 或者 $\lbrace0, 1,3\rbrace$ 等,这里集合中的数字表示要选择的元素的索引。

通常情况下,我们往往会使用哈希表来表示集合,好处在于可以方便的在 $O(1)$ 时间内确定元素是否处于集合中,坏处则是当我们需要做集合之间的运算,例如求交集或者并集,那么就需要 $O(n)$ 时间才能实现;另一个缺陷就是,当递归函数的可变实参中存在哈希表(或者对哈希表的引用)时,无法通过添加 $cach$ 数组实现记忆化搜索。


【资料图】

于是,我们需要想一个新的办法来表示集合,由于集合可以由全集(包含所有元素的集合)中每个元素的选或者不选来表示,因此,很容易联想到二进制上每一位的 $0$ 和 $1$,例如 $101 = 5$ 表示集合中只有第 $0$ 个元素和第 $2$ 个元素。

使用数学化一点的语言,即集合可以以如下方式压缩成二进制下的一个数字:

$$f(S)=\sum\limits_{i\in S}2^i$$

其中 $i$ 表示集合中的元素在原数组中的索引。$\lbrace a[0], a[1], a[3]\rbrace$ 即可由 $2^0+2^1+2^3 = 13$ 即二进制数 $1101$ 表示。

集合与元素

根据上面提到的二进制表示集合的方法,我们可以在 $O(1)$ 的时间内实现集合与元素之间的运算。

具体运算表格参见灵神的 从集合论到位运算,常见位运算技巧分类总结!。无需记忆,自己做题的时候很容易就能推导出来。

集合与集合

集合与集合之间的运算也可以在用二进制数表示集合的情况下,在 $O(1)$ 时间内完成计算。

具体运算表格同样参见灵神的 从集合论到位运算,常见位运算技巧分类总结!。

同样无需记忆,自己做题的时候很容易就能推导出来。

遍历集合

在集合用二进制数 $mask$ 表示的情况下,集合中的元素个数可以由 C++ 库函数 __builtin_popcount(mask)计算出来。

设元素范围从 $0$ 到 $n - 1$,挨个判断元素是否在集合 $s$ 中:

for (int i = 0; i < n; ++i) {    if ((s >> i) & 1) { // i 在 s 中,注意 == 运算优先级高于 &        //     }}

枚举集合

重头戏来了:设集合为 $s$,从大到小枚举 $s$ 的所有非空子集 $sub$:

for (int mask = s; mask != 0; mask = ((mask - 1) & s)) {    // 处理子集 sub 的逻辑}

暴力的枚举集合的办法是从 $s$ 出发,不断减一直到 $0$,但是这样中途会有很多并不是 $s$ 的子集的情况。

假设集合 $s = 10101$,那么它的子集从大到小依次为:

$$\lbrace 10101, 10100, 10001, 10000, 00101, 00100, 00001\rbrace$$

如果忽略掉 $10101$ 中间的两个 $0$,即忽略第一位和第三位的 $0$(位索引从 $0$ 开始),那么它的子集的数字变化与普通的二进制减法是一样的,即:

$$\lbrace 111, 110, 101, 100, 011, 010, 001\rbrace$$

因此,当我们执行 $(mask - 1)$ & $s$ 时,以 $10100$ 为例,相当于强制跳过了 $10100$ 到 $10001$ 中间那些第一位和第三位数字不为 $0$ 的数。

套用灵神的说法,以 $10100$ 为例,普通的二进制减法会把最低位的 $1$ 变成 $0$,把这个最低位的 $1$ 右边的 $0$ 都变成 $1$,即 $10100\rightarrow 10011$,我们这个压缩版的二进制减法,也是把最低位的 $1$ 变成 $0$,但对这个最低位的 $1$ 右边的 $0$,并不会全都变成 $1$,而是只保留 $s = 10101$ 中存在的 $1$,其他的会依旧是 $0$。

Gosper"s Hack

Gosper"s Hack 算法是生成 $n$ 元集合中所有包含 $k$ 个元素的子集的算法。

这里先给出 Gosper"s Hack 算法的代码

while (x < uplimit) {    int lowbit = x & (-x);    int left = x + lowbit;    int right = ((x ^ (x + lowbit)) / lowbit) >> 2;    x = left | right;}

接下来讲一下 Gopser"s Hack 算法的思想:

对一个二进制数,例如 $110110$,我们需要找到它从左往右的最后一个 $01$,然后把这个 $01$ 变成 $10$,再把它右边的 $1$ 全部集中到最右边(这里右边的 $1$ 显然都是连续的,否则与最后一个 $01$ 矛盾),即 $110110\rightarrow 111001$。

在举了例子之后,Gosper"s Hack 算法的思想其实很好理解。

我们利用 $x + lowbit(x)$ 得到的结果,就是将 $x$ 的第一个 $01$ 变成 $0$,同时右边的数全都变成 $0$,即 $110110\rightarrow 111000$,如果我们使用 $x \oplus (x + lowbit(x))$,即可得到 $x$ 从最后一个 $01$ 起的右边的数,即 $110110\rightarrow 001110$,我们再除以 $lowbit$,即可去掉 $x \oplus (x + lowbit(x))$ 的最右边的连续的 $0$,又因为 $x + lowbit(x)$ 会将这个最后一个的 $01$ 变成 $10$,$01 \oplus 10 = 11$,因此 $(x \oplus(x + low)) / lowbit(x)$ 的 $1$ 的个数比 $x$ 的最后一个 $01$ 的右边的 $1$ 的个数还多了 $2$ 个,于是我们再右移两位,即得到了我们需要 $right$。

参考

从集合论到位运算,常见位运算技巧分类总结!

算法学习笔记(75): Gosper"s Hack

标签:

最新
  • 【全球速看料】位运算与集合

    前言在刷LeetCode的时候,我们常常碰到需要枚举同时选择几个元素,或者

  • 环球头条:昨晚冲进球场的邸某某(男,18岁),行政拘留!

    北京朝阳警方刚刚通报:6月15日晚在工体举办的一场足球比赛中,一位球

  • LPR下调概率提升 房贷成本有望降低-今日热搜

    多位专家认为,本月15日的中期借贷便利(MLF)操作利率和20日的贷款市

  • 焦点日报:美商海盗船发布新款DARKSTAR鼠标:15个可编程按键

    6月16日消息,美商海盗船推出了新款DARKSTAR无线游戏鼠标,具有独特的

  • 新任国防部新闻发言人亮相,是他!_全球速讯

    24小时财经资讯平台,依托新锐财经日报《每日经济新闻》(NationalBusin

  • 近千名学生参与,南京首个线上快乐跑举办 全球资讯

    现代快报讯(记者 王新月)6月1-10日,南京首个线上快乐跑——南京市2

  • 天天简讯:信用卡自定义还款有什么好处 信用卡自定义还款后剩余还款金额什么时候还

    很多持卡人在使用信用卡之后,偿还信用卡账单时,会先选择自定义还款,

  • 热消息:中国首家丽思卡尔顿隐世酒店开业

    6月15日,中国绿发投资集团有限公司(以下简称“中国绿发”)携手万豪

  • 磁悬浮列车中国哪个城市有_磁悬球形车_消息

    当前大家对于磁悬球形车都是颇为感兴趣的,大家都想要了解一下磁悬球形

  • 《熟年》导演刘新:“舒适圈”不一定要打破

    最近播出的《熟年》,在近年来的家庭生活剧类型中,算是一部对于都市中

  • 能信不?快船希望以1年380万美元续约威少 明年再给大合同

    北京时间6月16日,据《露天看台》记者EricPincus报道,快船希望以一年3

  • 美国疾控中心:枪支暴力推波助澜 青少年谋杀率飙升_世界新消息

    美国枪支暴力不断,对青少年的心理健康以及人身安全造成了严重威胁。美

  • 果树苗去哪里买更正宗更好?

    现在种植果树的农户较多,为了保证果树的产量及品质,果农们要购买优质

  • 全球快看:俄国防部:俄乌冲突以来,超1万名俄士兵因摧毁或缴获乌装备获奖励

    【快讯】据塔斯社报道,俄罗斯国防部发言人科纳申科夫16日通报称,自俄

  • 全球热头条丨王府井股票代码是多少?王府井股票行情怎么样?

    王府井股票代码是多少?600859 王府井公司,简称王府井集团,是首旅

  • 年利率按360天还是365天算的?贷款利率按365天算吗?

    年利率按360天还是365天算的?贷款年利率一般按照360天来计算的,根

  • 旅游
    • 浙江省会是哪个城市?浙江省一共有几个市?看完就知道了! 焦点

    • 名师点评河南高考作文:感情倾向鲜明 寓意深刻 普适性强 世界快看点

    • 【环球聚看点】天玑810相当于骁龙多少处理器?天玑810相比于骁龙695哪个好?

    • 私募基金的组织形式有哪些?1美元等于多少人民币?-当前头条